启发式算法(Heuristic Algorithm)是一种在解决问题时通过启发式规则来选择下一步操作的算法。它通常用于解决NP-hard问题,这些问题的精确算法在复杂度上是不可行的。
例如,贪心算法是一种常见的启发式算法,它在每一步都选择当前最优的选择。比如在寻找最短路径问题中,贪心算法每一步都选择当前离终点最近的节点。
另一个例子是A*搜索算法, 主要用于解决在地图中从起点到终点的最短路径问题,它通过评估每个点到终点的预估距离来指导搜索,每次选择最小f(n) = g(n) + h(n) 的节点作为下一步搜索的节点。
A*启发式算法的代码示例如下:
def a_star(graph, start, end):
distances = {node: float('infinity') for node in graph}
distances[start] = 0
previous = {node: None for node in graph}
queue = PriorityQueue()
queue.put((0, start))
while not queue.
本文转载自:https://www.teamdoc.cn/archives/2929
Copyright © 2023 leiyu.cn. All Rights Reserved. 磊宇云计算 版权所有 许可证编号:B1-20233142/B2-20230630 山东磊宇云计算有限公司 鲁ICP备2020045424号
磊宇云计算致力于以最 “绿色节能” 的方式,让每一位上云的客户成为全球绿色节能和降低碳排放的贡献者